The influence of cloud top variability from radar measurements on 3-D radiative transfer
نویسنده
چکیده
In radiative transfer simulations the simplification of cloud top structure by homogeneous assumptions can cause mistakes in comparison to realistic heterogeneous cloud top structures. This paper examines the influence of cloud top heterogeneity on the radiation at the top of the atmosphere. The use of cloud top measurements with a high temporal resolution allows the analysis of small spatial cloud top heterogeneities by using the frozen turbulence assumption for the time – space conversion. Radiative observations are often based on satellite measurements, whereas small spatial structures are not considered in such treatments. A spectral analysis of the cloud top measurements showed slopes of power spectra between –1.8 and –2.0, these values are larger than the spectra of –5/3 which is often applied to generate cloud field variability. The comparison of 3-D radiative transfer results from cloud fields with homogeneous and heterogeneous tops has been done for a single wavelength of 0.6μm. The radiative transfer calculations result in lower albedos for heterogeneous cloud tops. The differences of albedos between heterogeneous and homogeneous cloud top decrease with increasing solar zenith angle. The influence of cloud top variability on radiances is shown. The reflectances for heterogeneous tops are explicitly larger in forward direction, in backward direction lower. The largest difference of the mean reflectances (mean over cloud field) between homogeneous and heterogeneous cloud top is approximately 0.3, which is 30% of illumination.
منابع مشابه
Reconstruction of cloud geometry using a scanning cloud radar
Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three-dimensional (3D) radiative transfer effects and cloud inhomogeneit...
متن کاملMultiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study
In May and June 1998 the Airborne Multiangle Imaging Spectroradiometer (AirMISR) participated in the FIRE Arctic Cloud Experiment (ACE). AirMISR is an airborne instrument for obtaining multiangle imagery similar to that of the satellite-borne MISR instrument. This paper presents a detailed analysis of the data collected on June 3, 1998. In particular, AirMISR radiance measurements are compared ...
متن کاملA novel ensemble method for retrieving properties of warm cloud in 3D using groundbased scanning radar and zenith radiances
We present a novel method for retrieving high-resolution, three-dimensional (3-D) nonprecipitating cloud fields in both overcast and broken-cloud situations. The method uses scanning cloud radar and multiwavelength zenith radiances to obtain gridded 3-D liquidwater content (LWC) and effective radius (re) and 2-D column mean droplet number concentration (Nd). By using an adaption of the ensemble...
متن کاملHeat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method
The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...
متن کاملA Multilayer, 1-D Solar Radiative Transfer Algorithm that Accounts for Subgrid-Scale Cloud Variability
A multi-layer, one-dimensional (1-D) solar radiative transfer algorithm that accounts for subgrid-scale cloud variability is presented. This algorithm was implemented in the National Center for Atmospheric Research (NCAR)-Community Climate Model (CCM) broadband column model. A subset of its validation is shown here using a three-dimensional (3-D) inhomogeneous cloud field generated by a cloudre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007